If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15a^2-19a-19=0
a = 15; b = -19; c = -19;
Δ = b2-4ac
Δ = -192-4·15·(-19)
Δ = 1501
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{1501}}{2*15}=\frac{19-\sqrt{1501}}{30} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{1501}}{2*15}=\frac{19+\sqrt{1501}}{30} $
| 32+3y-12=14y-10-5y | | x+x(1.5)=147 | | 6x-3x+12=3x+9 | | 2(8q+-5)=4q | | 4(2/5)+k=-3(2/11) | | -6r-34=7(6-6r)-2r | | 17x=−15/4 | | 6/8n=18 | | 46=-20y | | 2m—2=6 | | -6y-6+8y=2y-6 | | 46=20y | | 2m^2=-18m | | 1/5x=46/55 | | 38+7a=5(7+2a) | | 1/8x=23/72 | | -2(z-1)+3=-3z+(z-1) | | 167+19i+16=1132 | | 18x=2372 | | 6-(-10)=u+24 | | 13b+8-3b=48 | | -1/5y+7/3=-y-4/5 | | 7y-(9y-16)=14-(y+19) | | 3(y+5)+5y=23 | | 2x^2+27x+2=0 | | x2+3x=62 | | 9-(2-3t)=6+2t-(5+t) | | -64=-3x | | z/5-6=(4+1/3) | | 2+x^2+2x=-x^2-25x | | 2+x^2+2x=-x^2+x | | 3x-24/16-3x-12/12=4 |